Лесные пожары и космическая съемка. Мнения экспертов

0

Экстремально жаркая и засушливая погода, случившаяся нынешним летом в центральных районах европейской части России, и, как следствие этого, масштабные лесные пожары, бушевавшие во многих регионах, привлекли внимание к возможности использования космических съемок для оперативного выявления очагов возгораний. Мы попросили коротко осветить некоторые злободневные вопросы заместителя директора Института космических исследований РАН, отвечающего за направление «Исследование Земли из космоса», одного из руководителей работ по созданию, внедрению и поддержке информационной системы дистанционного мониторинга лесных пожаров Федерального агентства лесного хозяйства (ИСДМ-Рослесхоз), доктора технических наук Е.А. Лупяна.

В немногочисленной публичной информации об использовании космических съемок для мониторинга лесных пожаров в России этим летом упоминаются в основном космические аппараты Terra и Aqua cо спектрометром MODIS. Достаточно ли, на Ваш взгляд, только данных с этих спутников?

Дистанционный мониторинг лесных пожаров сегодня — это комплексный вопрос. Его не следует понимать только как мониторинг активно действующих пожаров. Это еще и мониторинг пожарной опасности, оценка пройденных огнем площадей, степени повреждения лесов и решение многих других задач, необходимых для ведения работ по обнаружению и тушению лесных пожаров, а также оценки их последствий. Конечно, все эти вопросы нельзя решить, используя только данные MODIS. Даже если говорить о получении информации об активном горении, то, как показывает наш опыт, для повышения частоты наблюдения действующих пожаров, безусловно, полезно вместе с данными MODIS использовать и данные приборов AVHRR со спутников NOAA.

Какие из работающих на орбите космических аппаратов перспективны для решения этих задач?

Если говорить о реальном опыте использования спутниковых данных для комплексного Мониторинга природных пожаров и их последствий, то, кроме данных спутников Terra, Aqua (прибор MODIS) и NOAA (прибор AVHRR), в ИСДМ-Рослесхоз сейчас массово используются данные спутников Landsat и SPOT-4. Для детальных выборочных оценок последствий отдельных пожаров используются также данные RapidEye. В ряде случаев (например, для верификации алгоритмов оценки повреждений лесов пожарами), безуслов но, полезны и данные сверхвысокого пространственного разрешения, например QuickBird. Правда, речь о массовом использовании таких данных для решения задач лесопожарного мониторинга пока не идет, в первую очередь из-за высокой цены данных и низкой периодичности съемки. Большие надежды мы возлагаем в перспективе на использование данных среднего пространственного разрешения, в том числе получаемых прибором КМСС, который, как мы надеемся, будет устойчиво работать на российских метеорологических спутниках серии Метеор-М.

Выделяются ли государством достаточные средства для ведения космического мониторинга лесных пожаров?

В последние несколько лет на обеспечение работы и дальнейшее развитие ИСДМ-Рослесхоз выделялись достаточно адекватные средства. К сожалению, в этом году средства были существенно сокращены, что привело в первую очередь к снижению объемов используемых в системе данных высокого пространственного разрешения и соответственно уменьшению работ по детальной оценке отдельных гарей. С учетом того, что в рамках лесопожарного мониторинга должны также решаться вопросы оценки постпожарных изменений и подготовки информации для обновления лесного реестра, необходимо увеличение средств на проведение такого мониторинга.

Можно ли оценить эффективность использования данных ДЗЗ для выявления очагов возгораний?

Следует отметить, что выявление очагов возгораний как одна из основных задач спутникового мониторинга стоит только в зонах космического мониторинга первого уровня (где решения о реакции на возникшие пожары принимаются только после их обнаружения по спутниковым данным) и космического мониторинга второго уровня (где тушение пожаров вообще не производится и мониторинг осуществляется только спутниковыми системами). В этих зонах спутниковый мониторинг сейчас полностью заменил авиационный, и альтернативы ему нет.

В зонах же авиационного и наземного мониторинга задача обнаружения пожаров лежит пока на наземных и авиационных средствах. В то же время, как показывает опыт эксплуатации ИСДМ-Рослесхоз, даже в этих зонах на основе спутниковых данных обнаруживается (т.е. впервые наблюдается) значительное число пожаров. Например, в 2009 г. более 50% пожаров, которые в дальнейшем стали крупными, были зарегистрированы по спутниковым данным на сутки раньше, чем по наземным и авиационным данным.

Высказать свое мнение о современном состоянии и перспективах мониторинга лесных пожаров из космоса с помощью оптико-электронных и радарных систем мы предложили также специалистам компании «Совзонд».

А.С. Черепанов, старший инженер по тематической обработке данных ДЗЗ, кандидат географических наук.

«Использование данных мультиспектрального сенсора MODIS, установленного на аппаратах Terra и Aqua американской системы EOS (Earth Observation Satellites), уже стало традиционным для целей выявления большинства контрастных тепловых аномалий на поверхности Земли, в том числе и раннего выявления очагов лесных и степных пожаров. Обусловлено это, с одной стороны, революционным для своего времени (Terra функционирует с 1999 г., Aqua — c 2002 г.) набором спектральных зон (всего 36, они покрывают диапазон от 0,6 до 14 мкм), широкой полосой охвата (2330 км), высокой периодичностью съемки и, что также немаловажно, открытым бесплатным доступом для всех физических лиц и организаций, а с другой — отсутствием реальной альтернативы для замены этих данных при решении указанной задачи. На современных съемочных системах среднего и высокого пространственного разрешения зачастую отсутствует аппаратура для съемки в среднем инфракрасном и инфракрасном диапазонах спектра, а на тех системах, где она есть (Landsat-5 / TM, Landsat-7 / ETM, Terra/ASTER), не используется очень важный для выявления очагов пожара диапазон — 3,5–4 мкм. Поэтому, несмотря на все имеющиеся недостатки (низкое пространственное разрешение (около 1 км) в важных для выявления очагов пожара диапазонах спектра 3,5–4 и 8–9 мкм; сложная геометрия, требующая специальных приемов при обработке; сильные искажения на краях сцен; низкая точность орбитальной привязки), на сегодняшний день данные сенсора MODIS остаются незаменимыми при решении такой важной и как никогда актуальной задачи мониторинга и выявления очагов лесных пожаров (рис. 1). Безусловно, появление нового спутника (или группировки из спутников), выполняющего съемку в диапазонах спектра 3,5–4 и 8–9 мкм с хорошим пространственным разрешением (100–200 м), могло послужить существенным дополнением к имеющейся системе мониторинга и выявления очагов лесных пожаров».

Ю.И. Кантемиров, ведущий специалист отдела программного обеспечения по обработке радарных данных.

Рис. 1. Данные сенсора MODIS. Лесные пожары в Австралии, январь 2002 г. Инфракрасный канал 9 мкм. Размер пиксела — 1 км [D. Oertel. High-temperature Applications of FUSION. Deutsches Zentrum f. Luft- und Raumfahrt, Optische Informationssysteme (DLR-OS) & Astro- und Feinwerktechnik Adlershof GmbH (Astrofein), Berlin].
Рис. 1. Данные сенсора MODIS. Лесные пожары в Австралии, январь 2002 г. Инфракрасный канал 9 мкм. Размер пиксела — 1 км [D. Oertel. High-temperature Applications of FUSION. Deutsches Zentrum f. Luft- und Raumfahrt, Optische Informationssysteme (DLR-OS) & Astro- und Feinwerktechnik Adlershof GmbH (Astrofein), Berlin].
«Использование спутниковых радарных данных для мониторинга лесных пожаров и их предотвращения представляется крайне перспективным ввиду всепогодности радарных съемок.

Однако первые попытки по оконтуриванию гарей, описанные во многих публикациях 1990-х гг., нельзя назвать удачными. Оказалось, что на некоторых радарных снимках гари четко дешифрируются, а на других снимках их не видно совсем. Анализ многопроходных серий радарных снимков также показал, что в некоторых случаях появление и развитие гарей хорошо заметны, в то время как в других случаях никаких изменений на радарных снимках выявить не удается, хотя было известно, что пожары на анализируемых территориях произошли. Этот не слишком удачный опыт 1990-х гг. объясняется довольно просто. В то время широко использовались радарные спутники ERS-1 и ERS-2, которые выполняли съемку только лишь в одной поляризации (ВВ) и только под одним относительно небольшим углом

Рис. 2 Мультивременной RGB-композит на территорию Саскачеван (Канада). В красном канале — снимок ERS за апрель 1995 г., в зеленом — за октябрь 1995 г., в синем — за январь 1996 г. Водная поверхность показана темно-зеленым и синим цветами. Красно-коричневый цвет большая часть снимка) — неповрежденный лес. Светло-голубой цвет — гарь от пожара летом 1995 г. [E. Dwyer, S. Monaco, P. Pasquali. An Operational Forest Mapping Tool Using Spaceborn SAR Data. ERS-ENVISAT Symposium, Goteborg, October, 2000].
Рис. 2 Мультивременной RGB-композит на территорию Саскачеван (Канада). В красном канале — снимок ERS за апрель 1995 г., в зеленом — за октябрь 1995 г., в синем — за январь 1996 г. Водная поверхность показана темно-зеленым и синим цветами. Красно-коричневый цвет большая часть снимка) — неповрежденный лес. Светло-голубой цвет — гарь от пожара летом 1995 г. [E. Dwyer, S. Monaco, P. Pasquali. An Operational Forest Mapping Tool Using Spaceborn SAR Data. ERS-ENVISAT Symposium, Goteborg, October, 2000].
съемки (23°). Однако даже при таких ограниченных возможностях достигались хорошие результаты за счет анализа интерферометрической когерентности, изменений амплитуды отражения и построения мультивременных RGB-композитов (рис. 2). C появлением новых спутников, способных производить съемку одновременно в четырех поляризациях (ВВ, ВГ, ГВ, ГГ) и в широком диапазоне углов съемки (от 10 до 60°), выяснилось, что съемка в 4-поляризационном режиме или в 2-поляризационном режиме с кросс-поляризацией при больших углах съемки от вертикали значительно усиливает контраст между гарью и окружающим лесом.

С помощью технологий поляриметрии и

Рис. 3. RGB-композит, построенный по трем поляризационным каналам одного радарного 4-поляризационного снимка ALOS/PALSAR. Красный канал — поляризация ГГ, зеленый — ГВ, синий — ВВ) [Chr. Thiel, Car. Thiel, J. Reiche, R. Leiterer, M. Santoro, C. Schmullius. Polarimetric PALSAR SAR data for forest cover mapping in Siberia. Proceedings of the 2008 Dragon Symposium, 21-25 April 2008, Beijing, P. R. China].
Рис. 3. RGB-композит, построенный по трем поляризационным каналам одного радарного 4-поляризационного снимка ALOS/PALSAR. Красный канал — поляризация ГГ, зеленый — ГВ, синий — ВВ) [Chr. Thiel, Car. Thiel, J. Reiche, R. Leiterer, M. Santoro, C. Schmullius. Polarimetric PALSAR SAR data for forest cover mapping in Siberia. Proceedings of the 2008 Dragon Symposium, 21-25 April 2008, Beijing, P. R. China].
поляризационной интерферометрии, реализованных в программном комплексе SARscape, можно создать серию выходных тематических продуктов, на которых выделяются гари и наблюдается их развитие во времени. В настоящее время, по мультиполяризационным данным при значительных углах съемки от вертикали уверенно выделяются классы «лес» и «не лес». Сложнее отделить вырубки от гарей. Если недавние вырубки довольно уверенно выделяются в отдельный класс, то старые вырубки от гарей отличить довольно сложно. Пример выделения гарей и вырубок приведен на рисунке 3.

Выводы: для задач мониторинга пожаров радарные данные ДЗЗ должны применяться в комплексе с оптическими и по возможности при поддержке полевых наблюдений. Многопроходные интерферометрические серии радарных снимков предпочтительнее, чем единичные изображения».